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S UMMAR Y 

The statistical interpretation of the histogram representation of NMR spectra is described, leading to an 
estimation of the probability density function of the noise. The white-noise and Gaussian hypotheses are 
discussed, and a new estimator of the noise standard deviation is derived from the histogram strategy. The 
Bayesian approach to NMR signal detection is presented. This approach homogeneously combines prior 
knowledge, obtained from the histogram strategy, together with the posterior information resulting from the 
test of presence of a set of reference shapes in the neighbourhood of each data point. This scheme leads to 
a new strategy in the local detection of NMR signals in 2D and 3D spectra, which is illustrated by a complete 
peak-picking algorithm. 

I N T R O D U C T I O N  

In the last 20 years, N M R  has become a major spectroscopic technique for the study of  
biological macromolecules in solution. Proteins are of  special interest, and currently structures of  
proteins up to 174 residues (Ikura et al., 1992) can be resolved using multidimensional NMR.  Yet 
N M R  has limitations, such as its intrinsic low sensitivity, coupled with a water signal which is 
often much more intense than the signal of  interest, giving rise to dynamic range problems. 
Furthermore, spectra are often affected by artifacts such as baseline distortions, intense solvent 
lines and tl noise. Signal processing is thus essential to extract information that can be used in 
structure determination. 

In general, post-acquisition treatments need either a noise-level evaluation or a discrimination 
between useful N M R  information and noise. The first class of  post-acquisition treatments can be 
illustrated by the following three methods. 

One of  the most widely used techniques is the Maximum Entropy Method (Delsuc, 1989) for 
high-resolution spectral analysis. This method requires an estimation of the standard deviation of 
the data points to stop signal reconstruction. Recently, another method has been reported by 
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Manoleras (Manoleras and Norton, 1992) to remove tl noise and artifacts. It is based on a 
weighted moving average, whose ponderations are calculated from a local estimation of the 
standard deviation of the noise. Iterative refinement of structures of proteins, based on the 
comparison between simulated NOE intensities and experimental ones, also requires some esti- 
mation of the local noise level (Borgias and James, 1988; Nibedita et al., 1992). 

The second class of post-acquisition treatments is demonstrated by NMR data set compression 
(Zolnai et al., 1988) and automatic peak-picking programs. The latter rely generally on a criterion 
similar to the determination of a threshold superior to the local noise level (Stoven et al., 1989; 
Kleywegt et al., 1990). 

In the first part of this paper we present a thorough discussion concerning the statistical 
properties of noise which occurs in NMR experiments. First, the statistical approach commonly 
used in NMR, i.e., the local maximum likelihood estimation, is presented. From this method, the 
two best estimators of the noise expectation and standard deviation are derived. Another statisti- 
cal approach, allowing the representation of a spectrum as a histogram, will then be discussed. 
This representation not only permits the evaluation of the Gaussian distribution hypothesis of the 
noise, but also the calculation of an alternative set of estimators. 

The second part of this paper introduces a new procedure for signal detection in 2D and 3D 
NMR spectra. A statistical distribution model of the noise and a deterministic local model of a 
line, made of a set of characteristic neighbourhood configurations, are discussed. The signal 
detection is reduced to testing of the presence of reference shapes in the neighbourhood of each 
data point. The Bayesian approach to this problem leads to a testing procedure that combines 
prior knowledge, obtained from histogram interpretation, with posterior knowledge, extracted 
from the neighbourhood of a data point. The difference between the experimental histogram and 
the stimulated one for a pure noise data set provides a prior estimation of the signal probability 
and a good representation of artifact and NMR  signal effects. The comparison between the 
neighbourhood of a point and the reference shapes, based on the noise distribution model, results 
in a posterior signal probability estimation. The testing procedure then combines these two 
information sets, depending on the noise level. 

THEORETICAL CONSIDERATIONS ABOUT NOISE 

In NMR experiments, data points are affected by some noise N. In order to deal with noise, 
hypotheses are formulated in this section and evaluated in the next one. The noise is assumed to 
rely on a stochastic process, in other words, for each acquisition time t, N(t) is a random variable. 
By definition the noise under study is uncorrelated with NMR signals, and the so-called tl noise 
is not under investigation here. 

Assuming that N is white noise, then N is a series of uncorrelated random variables (Arques, 
1982): 

E[N(t)N(t + At)] = a(t) 8 (At) (1) 

where E is the mathematical expectation, 5 the Dirac function and a(t) the noise energy at time t. 
When N is a stationary process, the probability properties of N are independent of the time origin 
and Eq. 1 becomes: 
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E[N(t)N(t + At)] = ag(At) (2) 

It is then possible to define time averages, and if N is an ergodic process (Arques, 1982; Ernst 
et al., 1987) these time averages shall converge to the ensemble averages over different realizations 
of a given random variable N(t). In this case, the study of the probability properties of N 
(ensemble averages) is equivalent to the study of the statistical properties (time averages). 

After these statements about the properties of noise, one can attempt to estimate some of its 
parameters. Usually the expectation m and the standard deviation (~ of the noise are estimated by 
interactively selecting an area assumed to be free of NMR  signal, and computing the average and 
the average of the square in this area. In the case of a Gaussian distribution, the expectation and 
the standard deviation completely define the distribution law, and the following expressions are 
their respective maximum likelihood estimators: 

m~ = ; xi 
i =  1 (3) 

n 

1 = 1  

where the subscripts lh denote maximum likelihood estimators. 
Rather than manually selecting an area A of appropriate size, such that ~ and ~ have 

acceptable biases and the signal contribution is low, it is possible to find automatically the best 
area of a given size by minimizing the signal influence. The intensity D of each data point is the 
sum of the noise N and possibly the NMR signal s: 

D = N +  s (4) 

As stated before, the noise and the signal are uncorrelated, so: 

= G + (5) 

and the maximum likelihood estimator of the standard deviation of D in any area A is: 

A A A 

O~h (A) = o 2 (A) + o~ (A) (6) 

A 

This equation shows~that there is a systematic bias to the estimation of ( ~  with (yl2h (A), due to the 
signal contribution ~ (A). 

With the hypothesis of a uniform noise distribution we obtain: 

A A 

o~ (A) = ~ (7) 

A A A 

The best 2 2 (A) is minimal, i.e., (~2 h (A) is minimal. This estimate of(~N is (~2 h (A), so that the bias (~s 
leads, within the framework of the hypotheses, to an automatic, and also the best, method to 
estimate the noise standard deviation (see Fig. 7). 

The histogram representation is a much more powerful tool for statistical analysis. Not only 
does it give access to the probability distribution of the population under study, but also a way to 



508 

H i s tog ram v a l u e  

H(Cl+2) - 

H(Cl+3) - 

H(cl+4) - 

H(Cl+l) - 

H(c I ) - 

| 

! i' 

J '! ) i i t  I I 
I - I - I - I I 

. ~176  a} ' al..1 a}..2 a}..3 a}:_4 al+ 5 

c} cj+ 1 c]+ 2 c}+ 3 c}+ 4 

v 

ooo I n t e n s i t y  

Fig. 1. Histogram representation of a spectrum. The horizontal axis represents the intensity of the points of the spectrum, 
and is divided in intervals [aj, aj + 1[. The vertical axis is the histogram value H(q) at cj, that is, the number of data points 
whose intensity lies in the interval [aj, aj + 1[. 

estimate some statistical parameters. Let X be the random variable associated with the intensity 
of  a populat ion of  points i, i e [1, Np], for example the points of  a spectrum, drawn from the same 
distribution probability. In the case of  N M R  data, this condit ion is fulfilled by the noise ergodici- 
ty assumption. The values of  X are parti t ioned in an arbitrary number  of  intervals called bins 
Bj, j E [1, NB], defined as follows: 

Bj = (cj, [ap aj + 1D, J e [1, NB] 

cj E [aj, aj + 1[, J ~ [1, NB]; aj + 1 > aj, j e [1, Ns] 
(8) 

The histogram H(j) of  the points {i} with bins Bj is then constructed by counting the number  of  
points whose intensity lies in bin j, that  is, in interval [aj,aj + 1[ (see Fig. 1): 

H(j) = card { i, i e [1, Np]" x, s [aj, aj + l[) , J e [1, NB] (9) 

If  fx is the probabili ty density function of  X, then the probabili ty Pj that  x falls in bin j is: 

Pj -- fx(x)dx, j ~ [1, NB] (10) 

a 1 

Let  k be the histogram value in bin j, that  is, H(j). The probabili ty that  k of  Np samples fall in 
bin j is given by the binomial law: 

Pj(k) = C~o pk(1 -- pj)Np- k, j ~ [1, NB] (1 1) 
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The expected value for k results in: 

E(k) = NpPj (12) 

A good estimate for Pj is deduced from Eq. 12, by replacing k by its value H(j): 

- - - -  H(j) 
PJ = n p '  j e [1, NBI 

When [aj, aj + l] is so small that fx is nearly constant in this interval, Eq. 10 becomes: 

(13) 

Pj -~ fx(cj)(aj + 1 - aj), j e [1, NB] (14) 

An estimate of fx (cj) can then be deduced from Eqs. 13 and 14: 

II,  l 

This relation is the link between the statistical study of the data {i}, i s [1, Np] with the interpreta- 
tion of the histogram H(j), j s [1, NB], and the probability density function fx of the underlying 
random variable X. 

The identification of fx with a model leads to an estimation of the model parameters. Consider- 
ing a Gaussian noise, the histogram strategy gives estimators ~HH and ~'n of the mean and the 
standard deviation of the noise (see Fig. 3): 

- ~ )  withH(k)>H(j)j .k,  (k,j) e [1, NB] 2 (16) 
mH = Ck 

For the large amount of data used in 2D and 3D NMR, the ratio of the noise data points to the 
signal data points is high, and the identification of the mode of the histogram with the maximum 
of the Gaussian model gives an accurate estimator 

RESULTS AND DISCUSSION OF THE NOISE STUDY 

The experimental study of the noise properties with the tools presented here is clearly ex- 
emplified in the case of 3D NMR spectra, where the large amount of data leads to the most 
significant statistical results. Any linear transform of a Gaussian process leads to another Gauss- 
ian process (Coulon, 1984), so the study in the frequency domain after Fourier transformation is 
equivalent to the study of the original data set in the time domain. 

The ergodicity and Gaussian distribution of the noise are evaluated as shown in Fig. 2, repre- 
senting the experimental histogram of a 3D homonuclear proton NOE-HOHAHA spectrum of 
256 x 256 x 256 points, and the corresponding simulated histogram for a Gaussian distribution. 
A first histogram is built for the full range of the spectrum values, and then a more accurate 
histogram is built around the interesting intensities. The Gaussian hypothesis appears to be 
relevant; the slight variation in the shape of the histogram results from baseline distortions and 
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Fig. 2. Histogram of 3D NOE-HOHAHA spectrum of 
Capsicein in H20, pH = 6.35, concentration = 4 mM, 
T = 318 K. Spectrometer frequency: 600 MHz. 
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Fig. 3. Histogram of the same spectrum as in Fig. 2, after 
baseline distortion correction. The identification of the 
maximum of the experimental distribution with the Gauss- 
ian model gives two estimators of the expectation and 
standard deviation, used to simulate the corresponding 
Gaussian distribution. 

N M R  signal, which tend to move some points from low-intensity bins into higher intensity bins. 
Figure 3 illustrates the influence of baseline distortion correction (Rouh, 1993) when applied to 
the same data. The difference between the experimental distribution and the Gaussian distribu- 
tion for positive values now mainly results from the positive lines corresponding to signal in the 
phase-corrected spectrum. 

The results of the different noise estimators and the white-noise hypothesis are discussed 
together. A noise profile in a 3D N M R  spectrum is constructed in the following manner: for each 
plane perpendicular to a given dimension, the best two-dimensional maximum likelihood estima- 
tor of a given size is computed. This profile for an estimator perpendicular to the acquisition 
dimension, together with the best three-dimensional maximum likelihood estimator for the whole 
spectrum, and the histogram estimator are represented in Fig. 4. The noise profile is not flat, due 
to dispersive solvent line components. The maximum likelihood estimator is c]'~ = 9775 and the 
histogram estimator is g'ff = 17 269, i.e., a difference of 43%. This difference is due to the fact that 
the histogram estimator reflects the whole spectrum, whereas the best maximum likelihood estimator 
is a local estimator, less influenced by the solvent line. The noise profiles for the planes perpendic- 
ular to the other two dimensions are rather flat, confirming the influence of the solvent line. 

Figure 5 displays the same estimators when baseline distortion correction is applied, resulting 
in a drop of the solvent effect. In this case the two estimators are ~]"-~ = 6949 and ~ = 7831, 
respectively, a difference smaller than 12%. The deviation from a pure white-noise profile results 
from residual solvent lines and from the tl noise (Manoleras and Norton,  1992). 

The computation times for a 16 x 106 point spectrum on a Silicon Graphics 4D30 work- 
station are 8853 and 69 s, respectively, which demonstrates the efficiency of histogram estimation. 
In addition, the histogram strategy has the ability to validate the probability distribution 
model, and may use different models apart from the Gaussian one, for example multimode 
distributions. 
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Fig. 4. Noise standard deviation estimators of the same 
spectrum as in Fig. 2. The lower dashed line is the histo- 
gram estimator and the upper one the best maximum likeli- 
hood estimator of size 20 x 20 x 20, scanned over the 
whole spectrum. The continuous curve is a plot of the best 
maximum likelihood estimator of size 30 x 30 for each 
plane perpendicular to the acquisition dimension, versus 
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NMR signal, and large enough so that the biases of the 
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Fig. 5. Noise standard deviation estimators of the same 
spectrum as in Fig. 2, after baseline distortion correction. 
The lower dashed line is the histogram estimator and the 
upper one is the best maximum likelihood estimator of size 
20 x 20 x 20 on the whole spectrum. The continuous curve 
is a plot of the best maximum likelihood estimator of size 
30 x 30 for each plane perpendicular to the acquisition 
dimension, versus the plane number. 

T H E O R Y  O F  B A Y E S I A N  D E T E C T I O N  

The second par t  o f  this paper  is devoted to a statistical me thod  to discriminate signal f rom 

noise. The statistical model  o f  the noise, associated with a deterministic model  o f  N M R  peaks can 

be used in a Bayesian detection o f  the signal (Duda  and Hart ,  1973). Given a hypothesis H about  

a phenomenon ,  the Bayesian approach  combines pr ior  knowledge o f  this hypothesis  with an 

observat ion ~ o f  the phenomenon ,  in order  to evaluate the hypothesis  (Howson  and Urbach,  

1991). Bayes '  theorem says that  if we know the pr ior  probabilities P(K) and P(H), and the 

condit ional  probabi l i ty  p(~[ H) o f  ~ given the hypothesis  H, we can evaluate the poster ior  proba-  
bility p ( H [ g )  in the following manner:  

p (H[~ )  - p(~[ H) P(H) (17) 
P(~) 

Fo r  the sake o f  clarity the method  is presented for  the 2D case, but  it remains valid for  the 3D 
case. 

The procedure  operates on a local elementary ne ighbourhood  for  each data  point,  represented 
by a vector  ~. Each  data  point  is regarded as being either a summit  or  a side (side A, side B, side 

C and side D)  o f  a peak and  is characterized by a special configurat ion o f  a 3 x 3 ne ighbourhood,  

Ss, SA, SB, Sc and SD, where the subscripts denote  the summit  and the four  types o f  side, 
respectively (see Fig. 6). The signal detection consists o f  testing the following hypothesis:  is there 
one characteristic configurat ion in the ne ighbourhood  o f  each data  point? 
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Fig. 6. The different types of points of a 2D NMR Lorentzian line are characterized by a local model, made of a set of 
special configurations of the intensities in the neighbourhood of the point. These configurations are compared to the 
spectrum in the statistical detection step, to discriminate the NMR signal from noise in the spectrum. 

The alternative approach is to use a set of reference peaks, good and spurious, and classify a 
candidate peak according to the k-nearest-neighbour rule (Kleywegt et al., 1990). A match factor 
is calculated between the candidate peak and each reference peak. If  the majority of the k-nearest 
reference peaks are true peaks, the peak will be classified as a true peak, otherwise it will be 
classified as a false one. Note that the corresponding hypothesis is the presence of a line at a given 
position, and not the determination of the extension of a peak. 

The elementary reference shapes are scaled to fit ~ with respect to a chi-2 criterion: 

gy = {Zgy,y : S.A.B,C,D + [~]~/min [Z2,~ = (5- O~gy-  ~1+)2] (18) 
a,13 

Under the hypothesis of a white Gaussian noise, this least-square fitting is the maximum likeli- 
hood estimation of c~ and 13 (Press et al., 1986). This fit is constrained, so that the resulting shape 
is a real candidate peak and not an artefact: 

[3 > Threshold1 
(19) 

> Threshold2 with Threshold2 > 0 

The first condition corresponds to a minimum ground value of the reference shape, and the 
second one to an upward positive peak with a minimum energy level. 
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A hypothesis Hy(y = S, A, B,_~C, D) is defined as the presence of  the shape S'y, y = S, A, B, C, 
D in the ' -* with Sy, y nexghbourhood x, ' = S, A, B, C, D different from noise. The null hypothesis H0 
is the lack of  signal in 2. The decision process consists of  two steps: first a choice of  the best 
hypothesis among Hs, HA, HB, Hc and HD and then a choice between the best hypothesis and the 
null hypothesis. 

The criterion for the first step is the minimisation of  the average error probability, which leads 
to the Bayes decision rule: 

decide Hy if P(Hy[2) > P(Hzl2)z ;ey (20) 

where P(Hy[2) is the probability of  the hypotheis Hy when the observation is 2. This rule is 
equivalent to: 

decide Hy if P(Hy) p (x lily) > P(Hz) p (xl Hz) z ~ y (21) 

The second criterion is the minimisation of  the average risk of  the decision, and the associated 
rule is: 

-~ P(Ho) Cyo - Coo decide Hy if p(xlHy) > (22) 
p(2lH0) P(Hy) Coy - Cyy 

where the left part of the inequality is the likelihood ratio, and the right part is the threshold of 
the test. The elements of the threshold are the costs of each type of  decision, i.e., Coo is the cost to 
decide H 0 when Ho is true; Cy0 is the cost to decide Hy when H 0 is true; Coy is the cost to decide Ho 
when Hy is true; and Cyy is the cost to decide Hy when Hy is true. The prior probabilities of Hy, 
y = 0, S, A, B, C, D are estimated from the experimental histogram Hexp and the theoretical one 
Htheo using Eq. 15 for a pure noise data set, that is, under the assumption that the density 
distribution fx is Gaussian. The N M R  signals move some points of  the experimental histogram 
from low intensity bins into higher ones, so the difference between the two distributions provides 
an estimation of  the largest number of  signal points Ns,: 

N B 

Nsi = 1- E 2 j =, [Hthe~ - H~xp(j)l (23) 

Following the same reasoning as in Eq. 13, an estimation of the probability of signal Ps, is: 

Nsi 
Ps, = - -  (24) y. 

Given the average size As of a 2D peak, the estimated prior probabilities Ps of  a summit, PA, PB, 
Pc, PD of a side point, and P0 of  a noise point are: 

Ps i  
P s = ~ s  

PA = PB = Pc = PD -- - -  
(A s - 1) 

4 
Ps (25) 

P0 = 1 - Psi 
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Fig. 7. Extract from the (t"2, t"3) plane 35, perpendicular to the 15N dimension of the 3D HOHAHA-HMQC spectrum of 
15N-enriched Capsicein in H20, pH = 6.35, concentration -- 4 mM, T = 318 K, spectrometer frequency: 400 MHz. The 
box is the area automatically determined for the calculation of the best maximum fikelihood estimators of size 10 x 20. 

The estimated prior probabilities for the hypotheses are directly deduced from these probabilities: 

P(Ho) = Po 

P(Hs) = Ps (26) 

P(H+0 = P(HB) = P(Hc) = P(HD) = PA 

The evaluation of the quantities P(~[ Hy)y = O,S,A,B,C,D is based on the Gaussian probability distribu- 
tion of the noise N: 

pr~(x0 = ~ 1  exp - ~  - -  , i~ [1 ,  Npl (27) 

We can simplify this equation by subtracting m from the whole spectrum, so that the new 
distribution is centered. 

As the noise is assumed uncorrelated with the signal, the probability of having ~ under the null 
hypothesis is equal to the probability that ~ is equal to the noise vector ~: 

p(~l Ho) = p(~ = ~lno) (28) 
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U to an unidentified peak, and the letter Z to artifacts. 

The noise components are uncorrelated, based on the white-noise assumption. Consequently, the 
probability density that there is no signal in the neighbourhood 2 is: 

-* = exp 22 (29) 

For the other hypotheses, we have: 

p(xlUy)y = S,A.B,C,D = p(2 = ~ + SylUy) (30) 

Under the hypothesis that the noise and the signal are uncorrelated, Eq. 30 becomes: 

p(xlHy)y = S,A,B,C,D = P(n = 2 - Sy[Hy) (31) 

SO: 

P(21Hy)y = S,A,B,C,D = / ~ 2 ~ )  9 exp [ -1-202 (2 - -~,2]Sy) (32) 
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15N-enriched Capsicein in H20, pH = 6.35, concentration = 4 mM. T = 318 K, spectrometer frequency: 400 MHz. 

The logarithm of rules 21 and 22 and the use of  Eqs. 29 and 32 give the final detection rule, i.e., 
decide Hy,y = 0,S.A,B,C,D that maximises the following quantity: 

if y = 0: oe logP(H0) + log _ 
(33) 

--9 2 

otherwise: -~x.Sy - ~ -  -~' Sy + o21ogP(Hy ) 

In 3D N M R  experiments, while the number of data points increases, the density of signal and 
artifact data points decreases. Consequently, the prior probability estimation is better than in the 
2D case. An extended peak model is then made of  a set of 3D shapes in a three-dimension 
3 x 3 x 3 elementary neighbourhood, and the vectorial signal representation enables a straight- 
forward general!sat!on from the 2D case. 

RESULTS A N D  DISCUSSION 

The strategy of statistical detection of N M R  signal is exemplified by a complete peak-picking 
algorithm that will be described elsewhere. The first step of  this algorithm is the signal detection, 
performed by the Bayesian detection presented above. The support of  each individual peak is then 
built, separating overlapping peaks when the summits are distinct. The last step consists in 
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Fig. 10. Solid curve: statistical detection of signal in the same plane area as in Fig. 9; dashed curve: peak extensions 
determined by a 3D peak-picking algorithm using the statistical detection step; crosses: peak summits in plane 37, 
calculated from the peak extension. The numbered labels correspond to the manual assignment of the protein, the letter 
U to an unidentified peak, and the letter Z to some noise. 

measuring the parameters of each peak, in particular the summit coordinates. All these proce- 
dures are implemented in a program named GIFC*, designed to process and display 2D and 3D 
spectra. The peak-picking using a 3 x 3 x 3 lineshape model was applied to a 3D 64 x 256 x 256 
points heteronuclear HOHAHA-HMQC spectrum of Capsicein, a protein of 98 residues. The 
computation time on a Silicon Graphics 4D30 workstation was 269 min and 807 peaks were 
detected. 

A contour plot representation of an area of the (f2, f3) planes 35 and 37 is shown in Figs. 7 and 
9. In Figs. 8 and 10, the results of signal detection are represented by solid lines, the peak 
extensions after the complete peak-picking procedure are represented by dashed lines, and the 
summits found in each plane are marked by crosses. The numbered letters correspond to the 
manual assignment of the spectrum, representing the best way to evaluate the quality of the 
results. 

The detection step appears to be reliable, since every peak found by manual examination is 
found by the algorithm, and there is little residual noise, denoted by the letter Z, apart from the 
two false peaks found in plane 35, which result from the residual solvent line. It is worth noting 
that the peaks Q46, L49 and Y12, found in plane 37, result from the influence of some peaks that lie 

* A copy of the source code for the routines described in this paper is available from the authors. 
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in plane 35. This is due to the extension of the reference shapes, which gives a good discrimination 
between noise and signal, but with a loss of locality. Moreover, the rest of the process is able to 
find the correct extensions of the peaks, and the deduced summits are the same as those manually 
determined. 

CONCLUSIONS 

In conclusion, we have developed an original procedure for signal detection in noisy spectra. 
Based upon a noise estimation by means of the statistical interpretation of spectrum histograms, 
it allows line-shape preservation. Bayesian detection proves to give better results than a standard 
contour plot. Our new peak-picking procedure provides accurate results for automatic assign- 
ment of multidimensional NMR spectra. 
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